

Laser Assisted Manufacturing Prof. Dr.-Ing. Dipl. Phys. A. Otto

Process Simulations for Optimizing and Planning Laser Material Processing

Andreas Otto, Rodrigo Gómez Vázquez

http://llf.ift.tuwien.ac.at

Different Scenarios - Similar Simulation Tasks

Laser Material Processing

Overview on the Simulation Model

Step	Used	Comment
Calculation technique	FVM	OpenFOAM [®] environment (GPLv3)
Fluid dynamics	N-S transport equations	Compressible fluid
Free surface tracking	Multi-material VOF-method	Interacting forces: Surface tension, vapor pressure, flow pressure
Laser Beam	Ray casting model	Multiple reflections, spatial energy distribution, divergent beam
Beam absorption/reflection	Fresnel equations	Angle-, polarization- & wavelength-dependent, plasma shielding
Heat Flux	Energy transport equation	Source terms: absorbed power, latent heats
Phase transitions	Enthalpy-porosity technique Clausius-Clayperon	solid <-> liquid liquid <-> vapor

Overview on the Tasks within the Study

Parameters under Examination

5

Comparison of Thermocouple Measurements with Simulation Results

Parameter Set A

TU		ſ
WIEN		

Time: 143.70 ms

Parameter set	А
Material	Al 99.5
Laser power	2 kW
Feed rate	10 m/min
Focus diameter	100 µm
Focus position	-2 mm
Beam quality M ²	3.82

	D
Cu-ETP	Cu-ETP
8 kW	4 kW
.0 m/min	16 m/min
.00 µm	50 µm
) mm	0 mm
3.82	1.91

Spikes and Pores for Parameter A

Longitudinal section

Experiment

Simulation

Parameter Set B

Time: 90.80 ms

	Parameter set	В	В
	Material	Al 99.5	Al 99.5
	Laser power	5 kW	5 kW
	Feed rate	16 m/min	16 m/min
	Focus diameter	400 µm	400 µm
	Focus position	0 mm	0 mm
2	Beam quality M^2	15.28	15.28

-

DC .
CiurETTP
4B KAXW
1160 mm//mmiim
500 μ πρ ιτη
Ømm
13 0217

D Cu-ETP 4 kW 16 m/min 50 μm 0 mm 1.91

> melting evaporation 500 1000 1500 2000 2500 3000 Temperature (K)

9

Minor Fluctuations in Depth for Parameter Set B

Longitudinal section

Experiment

(section a little bit out of the center)

Simulation

Overview on the Process Dynamics

From Process Analysis ...

P = 8 kW v = 8 m/s d = 50 µm thick. = 0.5 mm

... to Process Optimization

8kW 50µm (Doughnut)

Current Developments

New Physics:

- Ultrashort Pulsed Laser Processing
- Solidification Phenomena
- Thermomechanics

Additive Manufacturing:

- Laser Cladding
- Selective Laser Melting

Automised Process Optimization

Improvement of Calculation Efficiency

Solidification Phenomena: Grain Growth

keyhole + meltpool + grain formation

F